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The axisymmetric motion of a compressible fluid in a rapidly rotating cylinder 
is considered using a linear approach and boundary-layer techniques. The 
deviation of the fluid motion from rigid-body rotation is caused either by an 
applied temperature distribution on the side wall, a differential rotation of the 
top and bottom end plates or sources and sinks of fluid distributed on the end 
plates. The horizontal end plates are assumed to be thermally insulated, while 
the side wall is conducting. The critical parameter governing the problem is 
found to be E 3 ( y -  1)P,Go/4y, where E is the Ekman number, y the ratio of 
specific heats, P, the Prandtl number and C, the square of a rotational Mach 
number. If this parameter is larger than unity, the coupled effect of the com- 
pressibility of the fluid and the thermal condition on the end plates suppresses 
the flow in the cylinder. The flow in the inner inviscid core is strongly coupled 
with the Ekman-layer flow through the boundary conditions on the end plates, 
something which does not occur if the fluid is Boussinesq nor if the fluid is 
compressible and the end plates are conducting. 

1. Introduction 
The meridional flow of a compressible fluid in a, rapidly rotating cylinder is the 

fundamental initial state from which investigations of uranium enrichment in a 
gas centrifuge proceed (Cohen 1951; Kanagawa & Oyama 1961; Olander 1972; 
Matsuda 1975). A counter-current flow is established by either a vertical tem- 
perature difference in a thermally driven gas centrifuge, obstacles called scoupes 
in a mechanically driven device or by source-sink distributions on the horizontal 
end plates in an externally driven device. 

Thermally driven flow in a gas centrifuge was studied by Sakurai & Matsuda 
(1974, which will be referred to as I hereafter) and Nakayama & Usui (1974) 
under the assumption that all cylinder walls are thermally conducting. The case 
in which the side wall is thermally insulated was considered by Matsuda, Hashi- 
mot0 & Takeda (1976, which will be referred to as 111). Source-sink flows were 
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treated by Nakayama & Usui (1974), Hashimoto (1975) and Matsuda, Sakurai 
& Takeda (1975, which will be referred to as 11). 

Comparing these studies with invest'igations based on the Boussinesq approxi- 
mation (Homsy & Hudson 1969) clarifies the following characteristics of rotating 
compressible fluids: (i) as the effective Ekman number is a function of the radial 
position r ,  the Ekman suction varies radially; (ii) radial motions of fluid elements 
produce or remove heat through the work done by the pressure, and this heat 
affects the dynamics of the fluid. In  111, the authors found that characteristic 
(ii) is particularly pronounced when the cylinder walls are thermally insulated. 
They restricted themselves to thermally driven flow in a rotating cylinder with 
an insulated side wall and conducting end plates and found that the inner 
temperature field and the closed circulation in the Et-layer on the side wall 
deviate very much from those obtained on the assumption of a conducting side 
wall (Sakurai & Matsuda 1974). The axial flow velocity in the inner inviscid core, 
however, was found to be identical to the case of a conducting side wall because 
in this case the axial flow velocity is not coupled with the temperature field 
in the inner inviscid core and is determined only by the boundary conditions on 
the top and bottom end plates (see 111). This is peculiar to  the case of conducting 
end plates where the temperature distribution is given. Therefore, we can expect 
that in a general case, insulated end plates for example, the thermal conditions 
on the end plates yield the coupling between the axial flow and the Ekman-layer 
flow through the temperature. Then the axial flow, which plays an essential role 
in estimating the efficiency of uranium enrichment, will be affected not only by 
the conditions on the end plates but also by those on the side wall. 

Accordingly, in this paper we study the flow of a compressible fluid such as 
UF6 gas in a very rapidly rotating cylinder with completely insulated end plates 
and a conducting side wall as a limiting case; the flows are driven either thermally, 
mechanically or externally. The critical parameter governing the solution in 111 
was found to be a = hE-), where E is the Ekman number defined a t  the periphery 
and h = (y - 1) P, G0/4y is a measure of the compressibility of the fluid (see next 
section). If a is larger than unity, the combined effect of the compressibility of 
the fluid and the insulated side wall becomes important. In  a practical gas 
centrifuge, a was estimated to be of the order of 10. In the present problem, the 
critical parameter will be shown to be p E hE-4, which is estimated to have a 
value of lo2 N lo3. 

2. Formulation 
Basic equations 

Consider a cylinder of radius L and height 2H which is rotating about its vertical 
axis and which contains a compressible fluid such as UP, gas. The top and bottom 
end plates rotate with an angular speed Q + AQ and SZ - AQ, respectively, while 
the side wall rotates with angular speed Q. This configuration does not exactly 
simulate a mechanically driven gas centrifuge; however, it is adopted for the 
sake of simplicity. The top and bottom end plates are thermally insulated, while 
a linear temperature distribution is applied on the side wall, i.e. T = To + A T Z / H ,  
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where To is the mean temperature and Z varies from - H to H .  This temperature 
distribution on the side wall induces a thermally driven flow in the inner inviscid 
core. On the top and bottom end plates, there are circular slits through which 
fluid is injected or withdrawn. The axial velocity profiles are given by W+(r) 
and W-(r) on the top and bottom end plates, respectively, while the horizontal 
components of velocity are assumed zero in the rotating frame. 

Assuming axisymmetry and AT/To < 1 , we obtain the following set of linear- 
ized dimensionless equations in a manner similar to 111: 

divq+G,ru = 0, (2.1) 

- 4hru = (E/eR) AT, (2.5) 

P Go = - ML2Q2 h =  ( r -  i ) P , G o .  (2.7) eR = exp[gGo(r2- l)], E = - p2 QL2’ RT, ’ 4r 

In the above expressions, q(u, v, w), p and T are respectively the dimensionless , 
perturbations in velocity, pressure and temperature, pz is the fluid density at 
the side wall, P, the Prandtl number, 2M the mean molecular weight of the fluid, 
R the universal gas constant, y the ratio of specific heats and p the coefficient 
of viscosity. Equation (2.1) is the equation of continuity, (2.2)-(2.4) are the r, 6 
and x components of the equation of motion and (2.5) is the energy equation. 
The characteristic feature of a compressible fluid is the heat-source term con- 
tained on the left-hand side of (2.5), which is due to the work done by pressure 
during radial motion of the fluid. I n  the present work, we neglect gravity because 
its magnitude is about 10-6 times that of the typical centrifugal force in a gas 
centrifuge. 

The appropriate boundary conditions for the present problem are 

a T / a z = O  at z = & A ,  

T = z / A  at r = 1, 

u=O,  v = + r w ,  w = w + ( r )  at z = & A ,  (2.10) 

u = v = w = O  at r = 1 ,  (2.11) 

where A = B/L and w is the dimensionless angular speed of the end plate. - lo-’), 
Go = O(iO), h = O(l0-l) and A N 5. Therefore the parameter B = hE-), which 
plays a decisive role in the present problem, is of the order of 102 for a typical 
gas centrifuge. 

The orders of magnitude of the dimensionless parameters: E = O( 

22-2 
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Inner core 

The analysis of the inner inviscid core is completely parallel to that in I, I1 and 
111. Proper scaling of (2 .2)  gives us the thermal geostrophic-wind relation: 

(2.12) 

where f ( r )  = - c;l(ae/ar) and the suffix i denotes quantities in the inner core. 
Note that the pressure Pi is independent of z in the inner inviscid core from (2.4).  
Eliminating all variables except Ti from (2.1)-(2.5), we obtain 

1 + 3hr2 aTi 
r ar 

( 1  +hr2) (;+&) Ti+-- = hrzf ,  (2.13) 

where Zf =-+---- d2f 1df f 
dra rdr r2’ 

The problem reduces to solving for Ti and f ( r )  using (2.13) and the appropriate 
boundary conditions. The boundary conditions for Ti at z = f A and a t  r = 1 and 
the explicit form of f ( r )  are given after analysing the structures of the Ekman 
layers on the top and bottom end plates and the boundary layer on the side wall. 

3. The analysis of the Ekman layer 
In  this section we study the structure of the Ekman layer to obtain the 

horizontal boundary conditions for Ti and the explicit form of f ( r ) .  The Ekman- 
layer corrections to the inner flow are scaled according to 

u = Q, v = 0, w = E*a, T = h?, 7 = E-*(A-jz),  (3 .1)  

where carets over letters denote the corrections in the Ekman layer, 71 denotes 
the stretched co-ordinate and j is 1 for the top plate and - 1 for the bottom plate. 
The scaling of the temperature has been changed from that in I, I1 and I11 for 
the sake of convenience. 

Inserting (3 .1)  into the basic equations (2.1)-(2.5) and retaining the lowest- 
order terms with respect to EB, we obtain 

i a2a i a  aa 
r ar a7 En a729 

(3% (3.3) --(r&)-j-+G,,rQ = 0, -20+hr? = -- 

where the vertical component of the equation of motion is omitted because it is 
not required for the present problem. 

Using the order of magnitude of the quantities in the inner core and in the 
Ekman layer, we can rewrite the boundary conditions (2.8) and (2.10) as follows: 

aqaz-jpa?pq = 0, (3.6) 

Q = 0, vi+O = jrw, w i + 8  = w+(r). (3.7)-( 3.9) 
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Eliminating 4 from (3.4) and (3.5) and noting that boundary-layer corrections 

8 = - P/2r. (3.10) 

must vanish as q + GO, we obtain 

Eliminating 4, 8 from (3.3)-(3.5) to obtain an equation for P yields 

a4Plaq4 + 404P = 0, (3.11) 

where a = (&(1 +hr2)}b. Using ( 3 4 ,  we can write the boundary condition (3.7) 
in terms of P as a2?/aq2 = 0. Then (3.11) is easily solved to give 

Sr = C*(r) e+q cos vq at z = 5 A, (3.12) 

where C*(r) are unknown functions to  be determined later by using the other 
boundary conditions. The solutions for the other variables are 

4 = - (1 + hr2)) (2r)-lC*(r) e-21 sin crq, (3.13) 

8 = - C*(r) (24-l e-"? cos aq at x = f A. (3.14) 

Substitution of (3.12) into (3.6) gives 

aT,/az+j,h(r)C,(r) = o at x = + A. (3.15) 

Inserting (2.12) and (3.14) into (3.8), we obtain 

r2Ti - rf(r) - C*(r) = 2jr20 at x = f A. (3.16) 

Eliminating C*(r) from (3.15) and (3.16) we obtain the boundary condition for 
(2.13) on the top and bottom end plates: 

j aTi 
r2T,+-- = rf(r)+2jr2u at z = + A .  

P m  
(3.17) 

The axial velocity 8 is obtained by integrating (3.2) with respect to q: 

x at x = + A .  (3.18) 
r dr 

Substituting (3.18) into the boundary condition (3.9) and setting q = 0, we 
obtain the following two equations: 

(3.19) 

Noting the fact that, from the continuity equation (2. l), wi is independent of x 
in the inviscid core, we add and subtract the two equations contained in (3.19) 
to obtain, respectively, 

(3.21) 
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where C,(r) = i(C+ + C-) and C&) = +(C+ - C-). Equation (3.20) corresponds to 
the Ekman compatibility relation in ?n incompressible fluid. Equation (3.21) is 
msily solved to give 

CJr) = 2 ~ ( ~ ) - 1  ~ € R ( W +  - W-) dr, (3.22) 

where C*(O) = OIhas been used. In order to obtain C,(r) andf(r), we add and 
subtract the two equations in (3.16): 

f(r) = &-{q(T,A)+q(r ,  -A))-r-1c8(r), (3.23) 

(3.24) 

J: 

CJr)  = +r2(!P& A )  - q r ,  - A ) }  - 2r%. 

4. The analysis of the side-wall boundary layers 
The solutions in the inner inviscid core are connected with the boundary 

conditions on the side wall through the side-wall boundary layer. The structure 
of the side-wall boundary layer was studied by Stewartson (1957) and, for 
incompressible fluids, he found that this layer was composed of two layers with 
thicknesses Ea and E+, respectively. The extension to the case of compressible 
fluids is straightforward in the present parameter range. 

The Ei-Iayer components are scaled according to 

u =E*G, ~ = 6 ,  W = E ~ G ,  T = !P, (4.1) 

5 = E-a(r- l ) ,  (4.2) 

where tildes refer to the Ei-layer. Using the stretched variable 6 defined by 

we obtain the equations in the Ea-layer as 

aalaf; + aiqaz = 0, 

- 26 +- P + G,-I aglag = 0, 

2 6  = ayap, 
aglaz = 0, 

- 4 h ~  = aVIag=. 
These equations are easily integrated and G, 6, 65 and p can be expressed in 
terms of F ( 6 )  : 

1 a327 ' = 4( 1 + h) Go @ 

(4.10) 

(4.11) 
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where g,(z), g&) and a([) are unknown functions. To determine and 6 we 
must investigate the Ekman layers of the Ef-layer, called Ekman extensions, 
on the top and bottom end plates. The Ekman extensions have the same structure 
as the Ekman layer treated in Q 3 and we do not write down the equations. The 
solutions in the Ekman extensions are 

.ii = - &( 1 + h)* D&) e-21) sin ar, 
V" = - $D&) e-$1) cos Gr, 

(4.12) 

(4.13) 

G = )j( 1 + h)J (dB&)/dQ e-sq(cos 67 +sin eq), 

is = B&) e 4 7  cos 3q on z = A ,  

where 6 = (1 + h ) f .  The boundary conditions are 

(4.14) 

(4.15) 

(4.16) 
aP a!? 
ax a7 
---j/3-=0, V"+O=jw,  G + 8 = 0  a t  z = & A ,  

where we regard the quantities with tildes as ones including the components of 
solutions in the inner inviscid core. Substituting (4.9)-(4.11) and (4.13)-(4.15) 
into (4.16), we have 

2(g;(fA)5+9~(&A))+pa=D*(S) = 0, (4.17) 

(4.18) 

(4.19) 

From (4.17) and (4.18) we can see immediately that dF/dE is a linear function of 
& and, therefore, we can not have solutions of boundary-layer type. It should 
be noted that the fact of there being no Ef-layer is particular to the present case 
of thermally insulated end plates and imposes one condition on the solution in 
the inner inviscid core. 

The analysis of the E h y e r  is the same as in I and we do not go into the 
details here. The essential features of the E*-layer components of solutions are 
as follows: (i) since the temperature distribution on the side wall is antisymmetric 
with respect to z, the solutions ?j and F are expressed as antisymmetric functions 
of z expanded in Fourier series, where bars refer to the Ea-layer, (ii) the relation 

2hE+T = 0 (4.20) 

On the other hand, the boundary conditions on the side wall are expressed by 

vi+V = 0, T,+T = z/A.  (4.21), (4.22) 

Combining (2.12) and (4.20)-(4.22) and noting that V and F are antisymmetric 
functions of z, we conclude that 

f(1) = 0 (4.23) 

and T, = z/A(l+h) at r =  1. (4.24) 

holds. 
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The condition f( 1) = 0 is due to the fact that there is no E*-layer in the present 
problem through which the symmetric part of the solutions could be linked with 
the boundary conditions on the side waIl (see Hunter 1967). 

Before proceeding further, it may be useful to consider for what cases condition 
(4.23) is satisfied. Substituting (4.24) into (3.23), we obtain 

f(1) = - c,(l) = - 2 4  1)-l (4.25) 

The condition (4.23) implies, then, that the total mass flux of fluid into the 
centrifuge through the horizontal end plates must be zero. This is satisfied in 
most cases except a case in which the fluid is injected or extracted through the 
boundary within the side-wall boundary layer. In this paper we do not treat 
this exceptional case, although it is interesting to study how to match the 
symmetric partf( l), of the solutions in the inner inviscid core with the boundary 
condition on the side wall without the Et-layer. 

5. The inner temperature field 
Our problem reduces now to obtaining the inner temperature distribution 

from the governing equation (2.13) and boundary conditions (3.17) and (4.24), 
which couples with (3.22), (3.23) and the condition (4.23). In order to solve 
(2.13), we decompose T$ as follows : 

q ( r ,  z) = To(r) + zA-l( 1 + h)-1+ @(r, z), (5.1) 

where T,(r) is a particular solution of (2.13) and @(r, z )  a solution of its homo- 
geneous counterpart. As in 11, a formal solution for To(r), under the conditions 
T,(l) = Ti(0) = 0, is 

1 
To@) = - h /  T t-l( 1 + htz)-1dt/:829fd8. (5.2) 

The homogeneous solution CD should not be singular at r = 0 and must satisfy 
the boundary condition @( 1, z) = 0. Let us expand CD in terms of a symmetric 
part and an antisymmetric part according to 

leading to the Sturm-Liouville problem for (g,, A,), i.e. 

with gn = o at r = I, dg,/dr = o at r = 0.J 

By the Sturm-Liouville theorem, (5.4) possesses a complete set of solutions 
which can be used to represent any function of r .  If we neglect h, (5.4) reduces 
to the Bessel equation of zero order. The normalized eigenfunctions g, and the 
eigenvalues A, reduce to 2~J0(j0,r)/J1(jh) and jOn, respectively, where J, is an 
mth-order Bessel function and j,, is the nth zero of J,. These functions will be 
used to obtain numerical results in the next section. 
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The unknown constants a, and b, are determined from the boundary con- 
dition (3.17). Inserting (5.1) and (5.3) into (3.17), we obtain two equations, and 
addition of these two equations yields 

m 

n = l  
c a, A, tanh (A, A 1 g,(r) = - B 4 r )  c 8 ( r ) Y  

where use has been made of (3.23). Subtraction of the two equations gives 

(5.5) 

(5.6) 
m Par2 + A-l + 2/3ar2w. 

l + h  
b,{/3ar2 +A, coth (A ,  A)}  g,(r) = - 

n-1 

Using the orthogonality of the set g,(r), we multiply (5.5) and (5.6) by rg,(r) 
and integrate them from 0 to 1 to obtain 

a, = - 2/3AL1 coth (A, A )  15.7) 

and p 5 bmS1a(r)  r3g,(r) gm(r) dr + b, A, coth (A, A )  
m = l  0 

1 - - -p(1 +h)-1S01a(r)r3g,(r)dr-A-1(l +h)-'forg,(r)dr 

+ 2 p w I ;  a ( r )  r3g,(r)dr. (5.8) 

Equations (5.8) form an infinite set of linear algebraic equations. The first and 
second terms on the right-hand side of (5.8) are due to  the applied temperature 
gradient on the side wall, while the third term is due to the differential rotation 
of the end plates. The terms including are due to the compressibility of the 
fluid and the thermal insulation of the end plates. 

6. Numerical examples 
Thermally driven $ow 

Here we give numerical examples of the flow induced when we include only the 
linear temperature distribution on the side wall, i.e. no sourcc+sink distribution 
or differential rotation of the end plates is assumed. Since the inner temperature 
field is, in this cme, an antisymmetric function of z, we find that a,, f ( r ) ,  C,(r) 
and To(r) are identically zero. The function CJr)  is written simply as 

(6.1) I co 

CJr) = r2 2 6, g,(r) + (1 + h)-l . 
(n-1  

Substitution of (6.1) into (3.20) yields 

1 hr2 m 
w. ' = -- 8 a  1(1+hr2) t ( (4+Gor2+-)  l+hr2 ( 2  n=l b , g , ( r ) + F h )  +2r n = l  5 b,gb(r)) ,  

(6.2) 
where the prime denotes differentiation with respect to r .  

As in I11 we solve the equations neglecting h but retaining /3 (=  hE-4). In  
this approximation, g, reduces to the well-known Bessel function as pointed 
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out in the preceding section. The problem is now to solve an infinite set of 
h e a r  algebraic equations for b,, viz. (5.8), under the condition o = 0. These 
equations are solved numerically by truncating after the first 80 terms. The 
coefficient b, is then found to have converged sufficiently. 

Figure 1 shows the temperature distribution for the cases Go = 0, 0.01, 0.1 
and 1.  The values of/? corresponding to thesevalues of Go are 0,0.053,0.53 and 5.3, 
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respectively. In a11 numerical calculations the values of y, 4, E and A are set 
to be 1.067, 1, 10-7 and 5. The axial velocity profiles wi are shown in figure 2. 

Mechanically driven $ow 
We next consider numerical examples of mechanically driven flow caused only 
by an antisymmetric differentia1 rotation of the end plates, i.e. v = + r o  on 
z = & A .  No source-sink distribution is assumed and T = 0 on the side wall. 

E ~ G ~ E  1. The temperature fields in the inner inviscid cores of thermally 
driven flows. (a) Go = 1, ( b )  Go = 0.1, (c) Go = 0.01, (d) Go = 0. 
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FIUURE 2. The axial velocity profiles for thermally driven flows. -- -, axial velocity profiles 
for the case in which the end plates are not thermally insulated but have a constant tem- 
perature distribution, i.e. 17 = 1 at z = k A.  

Then the inner temperature field is antisymmetric with respect to z and we find 
f ( r ) ,  C,(r) and To(r) are identically zero. Also we drop the second term in (5.1) 
since the side-wall temperature gradient is not applied. The functions C,(r) and 

(6 .3 )  
wi reduce to m 

ca(Y)  = r2 ( z bngn(r) - 2 0  
n=l  

If we put w = - & and neglect h, (6 .3 )  and (6 .4 )  reduce to (6.1) and (6.2),  respec- 
tively. I n  the limit Go-+O, which is the incompressible limit, bn is identically 
zero and wi has the constant value w. In  figures 3 and 4, the inner temperature 
field and the axial velocity profiles are shown for purely mechanically driven 
flows based on numerical calculations which used truncation after 80 terms 
and w = -8. 

Externally driven $ow 
Here we consider the flow driven only by a source-sink distribution on the end 
plates. There is no differential rotation of the end plates, i.e. w = 0, and T = 0 
on the side wall. The inner temperature is symmetric with respect to z, and we 
can neglect bn and CJr); and again we drop the second term in (5.1). As C,(r) 
and an are solved explicitly in (3.22) and (5.7), it is straightforward to compute 
CD and obtain Ti. Substituting this into (3.23), we obtain 
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FIGURE 3. The temperature fields in the inner inviscid cores of mechanically driven flows. 
(a) a, = I ,  (a) a, = 0.1, (c) G, = 0.01. 

Combining (6.5) with (5.2), we get an integro-differential equation for f ( r )  or 
To(r). In the present approximation of small h, however, To(r) can be neglected 
compared withf(r) because the order of magnitude of T,(r) is hf(r) [see (5.2)]. 

As for the source-sink flow profile on the end plates w&), let us assume that 
these functions are expressed by delta functions. This means that the width of 
the source-sink slits is very narrow. In  reality, this simplification violates our 
basic assumption that w*(r) are smooth functions of r and in that case we must 
consider Stewartson's EQ- and E*-layers which occur on the slits (Nakayama & 
Usui 1974; Hashimoto 1975). However, as far as the overall structure of the 
solution is concerned, there is no significant difference. 

As an example of a source-sink distribution we take a configuration schemati- 
cally shown in figure 5. An inner slit is located at r = rl. Outer slits are located at 
r = 1 but just outside the EQ-layer on the side wall to satisfy the condition (4.23). 
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FIUURE 4. The axial velocity profiles for mechanically driven flows with w = - 4. ---, 
axial velocity profiles for the caae in which the end plates have a constant temperature 
distribution, i.e. T = 0 at z = rt: A .  

f 

FIUURE 5. The inflow and outflow configuration. 
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FIGURE 6. The temperature fields in the inner inviscid cores of externdly 
driven flows. (a) Q, = 1, (6)  Go = 0.1, (c) Cr, = 0.01. 

In this case, we have 0 for 0 < r < rl, 

J':reR(w+-w-)t = 

where A is a constant related to the amount of influx. Substitution of (6.6) into 
(5.7) yields 

1 
a,, = - 2a/3G1 coth @,A) rg,(r) dr. 

In the numerical calculations, we take rl = 0.5 and A = 1. 

wa is obtained from (3.20) as 
The inner temperature fields are shown in figure 6. The inner axial profile of 

wg = *(w+ + w-), (6.8) 



352 T. Xatsuda and K .  Hashimoto 
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r 

FIUURE 7. The profiles of f ( r )  (= - G;'dp'/dr). The jumps at r = 4 and 1 are due to the 
influx given by the delta function. ---, the profiles when the end plates have a constant 

temperature distribution T = 0 at z = & A ,  in which cme f (r)  = - 2r- 

which is determined only by the source-sink distribution and is not affected by 
the thermal conditions on the end plates. Therefore, instead of showing the axial 
flow profile, we give the distribution of the inner pressure gradient in figure 7. 

7. Concluding remarks 
The radial fluid motion in the Ekman layers causes volume changes in the 

fluid elements which in turn produce heat. This heat is absorbed through the 
end plates when they are thermally conducting; while, if the end plates are 
insulated, heat absorption through the end plates is prohibited and therefore 
the radial motions are suppressed. This, in turn, leads to the suppression of the 
axial flow in the inner inviscid core. 

To examine the effects of the thermal insulation of the end plates, we compare 
the results obtained in the last section with those of the conducting end plates. 
Ih figures 2, 4 and 7 the continuous lines refer to the insulated end plates and 
the dashed lines refer to the conducting end plates, on which the temperature is 
fixed at a certain constant value. Figures 2 and 4 show the profiles of wi for the 
thermally driven case and the mechanically driven caae, respectively. We can 
see the suppression of the axial flow in the greater part of the inner core except 
the region near the side wall. The large axial flow near the side wall indicates 
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the existence of large radial motions in the corresponding regions of the Ekman 
layers. These large radial motions must be maintained by the heat supply from 
the side wall because the end plates are thermally insulated. The large heat flux 
from the side wall to the Ekman layer in the corner regions at r = 1 and x = _+ A 
can be seen in figures 1 and 3. Figure 7 shows the distribution off(.), which is 
equal to - G;ld€#r for the externally driven case. The differences between the 
continuous lines and the dashed lines become larger as Go increases. This implies 
that, as Go increases, the pressure difference between the inner slit and outer 
slits required to maintain the same amount of source-sink flow is greater for 
thermally insulated end plates than for conducting end plates, because of the 
predominance of the suppression of the radial fluid motion in the Ekman layer. 

The conclusion that the thermal conditions on the end plates have a direct 
influence on the axial flow is quite different from that obtained in 111, in which 
it was found that the thermal condition on the side wall affects the inner tem- 
perature fields but not the axial flow when the end plates are thermally con- 
ducting. For the separation of uranium isotopes by the gas centrifuge, the dis- 
tribution of the isotopes is calculabd from the axial flow profile. Hence, from 
the practical point of view, the evaluation of the thermal condition of the end 
plates is an important problem. 

A distinctive feature of the present problem is that there is no Ef-layer, 
whether Ti and vi at r = 1 or the T and v given as side-wall boundary conditions 
have symmetric parts or not (in the strict sense of the term, ‘symmetric part’ 
means the constant part when the solutions are expanded in Fourier series with 
respect to 2). So far, the role of the Et-layer has been understood as connecting 
the constant parts of the inner solutions and the side-wall boundary conditions. 
We can not expect this matching by the E*-layer in the present problem and 
this leads to one condition: the corresponding constant parts must be equal to 
each other. In this paper we restricted ourselves to the case in which this con- 
dition is satisfied. However, as is mentioned at  the end of $4, the condition is 
not always satisfied and the present authors have been investigating the problem 
of how to match the solutions at the side wall in such a exceptional cam. 
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